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ABSTRACT 

We study the £-group network-interdiction problem (KND?) in which a "network 

user" attempts to maximize flow among K > 3 "node groups," while an "interdictor" 

interdicts (destroys) network arcs, using limited interdiction resources, to minimize this 

maximum flow. We develop two models to solve or approximately solve KNIP. 

The multi-partition network-interdiction model (MPNIM) is an approximating 

model. It partitions the node set N into K different subsets, each containing one 

prespecified node group, and interdicts arcs using limited resources so that the total 

capacity of uninterdicted arcs crossing between subsets is minimized. The multi- 

commodity network-interdiction model (MCNIM) explicitly minimizes the maximum 

amount of flow that can potentially be moved among node groups using K single- 

commodity flow models connected by joint capacity constraints. It is a min-max model 

but is converted into an equivalent integer program MCNIM-IP. 

Both MPNIM and MCNIM-IP are tested using four artificially constructed 

networks with up to 126 nodes, 333 arcs, K=5, and 20 interdictions allowed. Using a 333 

MHz Pentium II personal computer, maximum solution times are 563.1 seconds for 

MPNIM but six of 16 MCNIM-IP problems cannot be solved in under 3,600 seconds. 
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I.        INTRODUCTION 

The study of network interdiction considers the problem of allocating firepower 

or other means to lessen the warfighting capabilities of an enemy through interdictions of 

his transportation and/or communications networks. 

One well-studied interdiction problem, the "maximum-flow network-interdiction 

problem" (MFNIP), minimizes the maximum source-to-sink flow through a capacitated 

network by interdicting (attacking) network arcs with limited interdiction resources. This 

thesis investigates a generalization of MFNIP, the "X-group maximum-flow network- 

interdiction problem" (KNIP), and develops two models to solve or approximately solve 

this problem. 

In this chapter, we provide background on network interdiction, introduce KNIP, 

and briefly explain the proposed models. 

A.       OVERVIEW 

In MFNIP, a "network user" (enemy, adversary) attempts to maximize the amount 

of flow from a source node to a sink node in a capacitated network G while an 

"interdictor," using limited resources, strives to minimize this maximum flow by 

interdicting (breaking or stopping flow on) network arcs. Steinrauf (1991) and Wood 

(1993) use mathematical-programming methods to solve MFNIP. They develop a min- 

max formulation of MFNIP, the "maximum-flow network-interdiction model" (MFNIM), 

and then convert that into an integer-programming model (MFNIM-IP). 

MFNIP is reasonable for situations in which flow moves from one or more source 

nodes to one or more sink nodes. The model assumes that (a) the interdictor has complete 

information about source and sink nodes in the network and (b) no node in the network 



acts as a source and sink node simultaneously. Thus, MFNIP is sensible for simple 

scenarios, for instance, where the enemy must move materiel, equipment, or troops 

through a transportation network from one or more rear staging points (source nodes) up 

to one or more battlefield locations (sink nodes). 

Not all wartime scenarios are so simple, however. For instance, an enemy may 

have K "regional forces" scattered around a theater of war and interconnected by a 

communications network G with known topology and link capacities. The interdictor 

would like to use limited interdiction resources to attack this network and minimize his 

adversary's inter-group communications capabilities. 

We cannot use MFNIM to model the above problem. We assume G to be 

undirected and call this new problem the "AT-group maximum-flow network-interdiction 

problem" (KNIP). In KNIP, the network user tries to maximize the amount of flow in G 

among three or more "special node groups," e.g., different regional forces, each 

represented as a group of nodes; the interdictor uses limited resources to attack and 

minimize that maximum flow. As the interdictor, the assumption that the adversary will 

maximize flow among the special node groups allows us to minimize the worst-case 

functionality (for us) of the enemy's system. This provides an upper bound on the true 

quantity of materiel or message traffic that will be moved through the network, and this is 

probably the best we can do without knowing the value or purpose of particular flows. 

KNIP may arise in situations where the interdictor has a rough idea about the 

locations of the enemy's force groups (or supply points, demand points, etc.,) but is 

unsure of exactly how much, and between which force groups, materiel or messages will 

be transferred.   To solve KNIP, we develop two models, namely the "multi-partition 

2 



network-interdiction model" (MPNIM) and the "multi-commodity network-interdiction 

model" (MCNIM). In both MCNIM and MPNM, we assume that (a) the network 

G=(NA) is capacitated and undirected and (b) K disjoint "special node groups" N[,...,N'K 

are prespecified where each   Nk   represents  a set of source and/or sink nodes. 

Furthermore, IK «\N\ is assumed, although this assumption does not materially 

affect any of the solution techniques. 

MCNIM is a direct model for KNIP, i.e., it explicitly minimizes the maximum 

amount of flow that can be moved among the node groups N^,...,N'K. MCNIM models 

the potential movement of enemy supplies or messages using K single-commodity 

maximum-flow models connected by joint capacity constraints: For each k', N'k. is 

treated as a set of source nodes and [jN'k  is treated as a set of sink nodes.   The 

interdictor destroys arcs to minimize the maximum amount of flow that can be moved in 

this ÄT-commodity model. 

MCNIM is a complicated model that may be difficult to solve. Therefore, we first 

describe and solve a smaller approximating model MPNIM. MPNIM partitions the node 

set N into K subsets N1,...,NK, with Nk c N1,...,N
/

K c NK, and interdicts certain arcs 

connecting the subsets AT* while observing constraints on interdiction resources. The 

objective is to minimize the total capacity of the uninterdicted arcs crossing between the 

various subsets. 

MPNIM is simpler than MCNIM and may be easier to solve. Furthermore, we 

show that it can be modified to completely isolate K node groups, if desired. However, 



MPNIM is an approximating model because (a) it does not explicitly minimize flow 

among the node groups and (b) it does not enforce the sensible requirement that the nodes 

in each identified subset be contiguous. 

KNIP is equivalent to MFNIP when the number of disjoint node groups K=2 and 

the network G=(N^) is undirected. Thus, MFNIP may be regarded as a special case of 

KNIP. 

B.       LITERATURE SEARCH 

Several network-interdiction problems have been studied in the literature, but 

most research has dealt with MFNIP. MFNIP was originally motivated by efforts to 

destroy enemy supply lines during the Vietnam War. The problem has been studied by 

Wollmer (1964, 1970), Durbin (1966), McMasters and Mustin (1970), Helmbold (1971), 

Ghare, Montgomery, and Turner (1971), Lubore, Ratliff, and Sicilia (1971, 1975), 

Steinrauf (1991), and Wood (1993). MFNIM, which is a starting point for this thesis, 

. appears in the last two works. Cormican (1995) shows how to solve MFNIM using 

Benders decomposition and Cormican, Morton and Wood (1995) solve a stochastic 

version of MFNIM with uncertainty in interdiction successes and/or arc capacities. 

Another category of network-interdiction models is also well-studied, namely 

"maximizing the shortest path" (MXSP). In MXSP, a network user wishes to traverse a 

shortest path from a specified node s to a specified node t in a directed (or undirected) 

network G=(Nji) whose arc lengths c/,->0 are known. An interdictor attempts to 

interdict (destroy or lengthen) arcs, using limited interdiction assets, to maximize the 

length of all shortest-paths. Contributors in this area are Fulkerson and Harding (1977), 



Golden (1978), Israeli (1999), Israeli and Wood (1999) and Wevley (1999). (Wevley's 

model is actually a variant on MXSP.) 

Steinrauf (1991) studies a network-interdiction model that isolates a node or a set 

of nodes in a drug-interdiction scenario. His model destroys arcs to isolate the maximum 

number of nodes around a "central node" in an attempt to maximize the chance of 

isolating a drug-supply node that is believed to lie near the central node. The model 

identifies a set of arcs to interdict and the set of isolated nodes. 

Reed (1994) devises an integer-programming model to maximize the longest path 

in a PERT network through interdiction. The PERT network represents significant tasks 

or "activities" of a project together with precedence relations between activities and the 

nominal time required to complete each activity. Interdictions lengthen the time required 

to complete activities and can therefore be used to delay project completion. Reed 

constructs an interdiction model to delay the proliferation of nuclear weapons. 

Wollmer (1970) and Washburn and Wood (1994) develop game-theoretic 

network-interdiction models. However, the purpose of these models is quite different 

than those mentioned above. In particular, these authors try to determine optimal arc- 

inspection strategies to detect an evader moving through a network secretly. These 

models are not related to this thesis. 

C.       OUTLINE OF THESIS 

The remainder of this thesis is organized as follows. Chapter II gives essential 

definitions and notation together with a detailed background on MFNIM. In Chapters III 

and IV, we develop MPNIM and MCNIM, respectively.   We give the computational 



results regarding both models in these chapters.   Chapter V provides conclusions and 

recommendations for further research. 



II.       PRELIMINARIES 

In this chapter, we give essential definitions and notation together with a detailed 

derivation of MFNIM. Most definitions follow Wood (1993) and Ahuja, Magnanti, and 

Orlin (1993). 

Although KNIP is defined on an undirected network, much of the related theory is 

based on directed networks. Therefore, we use those networks as a starting point and 

discuss undirected networks later. 

A. DEFINITIONS AND NOTATION 

G=(NA) denotes a directed network with node set N and arc set A. An arc is an 

ordered pair (ij) with i, je N, and i* j. For an arc (ij), i is the "tail node" from which 

the arc originates, and j is the "head node" at which the arc terminates. An arc (ij) is 

"incident from f and "incident toy." FS(i) (forward star of node i) represents the set of 

arcs incident from node i and RS(/) (reverse star of node i) represents the set of arcs 

incident to node i. 

In this thesis, we assume a single type of interdiction resource. R total units of 

resource are available to the interdictor, and i~ units of resource are required to interdict 

arc (IJ). The rtj may be assumed to be small, positive integers. 

B. NETWORK MAXIMUM-FLOW MODELS 

1.        Standard Maximum-Flow Model 

In MFNIM, the network user is assumed to solve a maximum-flow model after 

observing the effects of interdictions. In this section, we define the "standard" 

maximum-flow model (MFM) (e.g., Ahuja, Magnanti, and Orlin 1993, p. 168) that 



determines the maximum quantity of a single commodity that can be moved through a 

capacitated network from a source node s to a sink node t. 

We consider a capacitated, directed network G=(N,A) with a nonnegative capacity 

Uy < oo associated with each arc (/, j)e A . Let U = maxu,7. To define the "maximum- 
(i.j^A    'J 

flow problem," we distinguish two special nodes in G,  a "source node" s and a "sink 

node" t, t*s. Maximizing flow from s to t is the same as maximizing flow along an 

extra "return arc" (t,s) added to G. 

Maximum-Flow Model (MFM) 

Indices: 

/, je N nodes in an directed network G = (N, A). Includes two special nodes, 

the source s and the sink t . 

(/, j) e A       directed arcs in the network G = (N, A) 

Data: 

Uy nominal capacity of arc (i,j) 

Decision Variables: 

yy amount of flow on arc (i,J) 

Formulation: 

max     yu : dual variables 
y 

(s,j)<=FS(s) (j,s)aRS(s) 

E   y*~    ^yji        =°        VieN-s-t      :at (2) 
(i,j)eFS(i) (yV)GÄS(i) 



(t,j)€FS(t) (j,i)RS(t) 

0<yij<Uij       \f(i,j)eA :09 (4) 

The quantity ytJ is the flow of the commodity from node i to node j on directed 

arc (i, j)e A, and ya is the flow from sink node t to source node s on the artificial return 

arc (t,s). The "flow-balance constraints" (1), (2) and (3) require that the flow arriving at a 

node equal the flow leaving the node. Capacity constraints (4) require that flow on each 

arc be non-negative and not exceed the arc's capacity. 

2.        Simplified Maximum-Flow Model 

An equivalent and simpler formulation of the maximum-flow model can be 

obtained if flow entering the sink node t or flow leaving the source node s is maximized. 

This formulation, which will simplify our later models, is: 

Simplified Maximum-Flow Model (SMFM) 

max    £v9 (5) 
y      (s,j)eFSU) 

s-1-       I    ya-   2>j.=°        VieN-s-t (6) 
(iJ)eFS(i) (/,i)eAS(i) 

ybsO        V(i,s)eRS(s) (7) 

y9=0        V(t,j)eFS(t) (8) 

0<y„<«iy       V(i,j)eA (9) 

The objective (5) is to maximize flow entering the sink node t, although it can be 

replaced by max    ^ yit which maximizes flow leaving the source node s. Constraints 
1 0\i)6ÄS(») 

(6) are the standard flow-balance constraints for nodes other than s and t. Constraints (7) 

9 



and (8) set the flow on arcs that terminate at s and leave t to zero, respectively. Capacity 

constraints (9) are as before. 

3.        Cuts and the Dual of the Maximum-Flow Model 

A "cut" (Ns ,Nt) is a partition of the node set N into two subsets Ns and N, such 

that se Ns and te N,. Each cut defines a set of arcs that have one endpoint in Ns and 

the other endpoint in Nt With respect to that cut, an arc (/, j) is a "forward arc" if / e Ns 

and jeNt; otherwise it is "backward arc."   The "capacity of a cut" (Ns,Nt) is 

^Uy   , i.e., the capacity of the cut is the sum of arc capacities for the forward arcs 

crossing the cut. A "minimum cut" is a cut whose capacity is minimum among all 

possible cuts in the network. 

By the well-known maximum-flow minimum-cut theorem (Ford and Fulkerson 

1956), the maximum flow equals the capacity of a minimum cut. A minimum cut can be 

found directly by solving the dual of the maximum-flow problem DMFM (e.g., Wood 

1993). DMFM, which we will show next, is important for formulating MFNIM-IP. 

The dual variables of the maximum-flow model, ai and 6tj, have already been 

indicated in MFM. When we find an optimal solution to the maximum-flow problem, we 

also find an optimal solution to the minimum-cut problem through those dual variables. 

Dual of the Maximum-Flow Model (DMFM) 

Indices: 

/, je N nodes in an directed network G = (N, A). Includes two special nodes, 

the source s and the sink t 

(i, j) G A        directed arcs in the network G = (N, A) 
10 



Data: 

it- nominal capacity of arc (i,j) 

Decision Variables: 

at dual variables associated with flow-balance constraints (1), (2) and (3) 

fromMFM 

6g dual variables associated with capacity constraints (4) in MFM 

Formulation: 

min       J>..0,y 

s.t.       a, - aj+0^0        V(i,j)eA (10) 

a,-a,        *1 (ID 

ey>0 V(/,;)eA 

In fact, the dual variables in DMFM may be assumed to be binary (e.g., Wood 

1993).   Let (Ns,Nt) correspond to a minimum cut in G = (N,A) and let at =1 for 

V i e N,, ai = 0 for V i e Ns, 0tj = 1 for all arcs (i, j) which are forward arcs in the cut, 

and Of = 0 for all other arcs. Constraint (11) is obviously satisfied by the assignment of 

the variables. We can also see that constraints (10) are satisfied by checking against the 

four classes of arcs (i,f): (a) ie Ns,je Ns, (b) ie Ns,je Nt, (c) ie Nt,je Ns, and 

(d)  ie Nt,je Nt.    Thus, the above solution is feasible. Furthermore, because the 

objective function of DMFM equals the capacity of the minimum cut (Ns,Nt), it follows 

11 



from maximum-flow minimum-cut theorem and linear-programming duality that the 

solution is optimal. Wood (1993) uses this result to convert MFNM into MFNIM-IP. 

4.        Undirected Networks 

G=(NA) may also denote an undirected network. Undirected networks are 

important to us because (a) many real-world networks such as road and 

telecommunications networks are essentially undirected, (b) KNIP will be defined on 

undirected networks and (c) although MFNIM was originally defined for directed 

networks, Wood (1993) shows how to extend it to undirected networks. 

An undirected network is defined in the same manner as a directed network 

except that arcs are unordered pairs of distinct nodes. In an undirected network, we can 

refer to an arc joining the node pair i and j as either (i,j) or (j,i). The arc (i,J) is said to be 

"incident to" both nodes / and y. A(i) denotes the set of arcs incident to node i. 

How on an undirected arc (i,j) can move from / toy, which will be represented by 

ytj, or it can move from j to i, which will be represented by yjt.  The total flow (i.e., 

from node i to node j plus from node./ to node i) on an undirected arc (i,j) has an upper 

bound utj. That is, the maximum-flow model for an undirected network G has capacity 

constraints y{j + yß < utj  V (/, j) e A.   So, a maximum-flow model for an undirected 

network G=(NA) is: 

12 



Maximum-Flow Model for an Undirected Network 

max    yu 
y 

;':(i,y")eAu(7,s)eA y:(i,y)6Au(j,s)GA 

y":(i,7")eAu(7,i)eA j(i,j)eA<j(j4)eA 

X    ?&•-    X ?*->«.=0 
y:(«,y)sAu(;,f)eA j(t,j)eAu(.jj)eA 

ys+?*•£«#      V(i,;')eA 

ty.y^O       V(«,J)EA 

The above model is equivalent to a maximum-flow model on a directed network 

G+ = (N,A+) where A+ denotes the set o.f anti-parallel directed arcs derived from the set 

of undirected arcs A so that A+ = 2| A|. 

In an s-t maximum-flow model for an undirected network G, adding simple upper 

bounds  yy^Uy  and  vy7 <«,-,- instead of capacity constraints  y9 + y fi < utj, suffices 

because there always exists an optimal flow with ytJ = 0 or yß = 0 (e.g., Ahuja, 

Magnanti, and Orlin 1993, p. 39). In MCN1M, extensions of the constraints 

yy + yß < Uy will be required; simple upper bounds will not suffice. 

C.       MAXIMUM-FLOW NETWORK-INTERDICTION 

1.        Maximum-Flow Network-Interdiction Model 

MFNIP can be formalized in a min-max flow-based model.   The network user 

attempts to maximize the flow across the network, while the interdictor simultaneously 

strives to minimize this maximum flow. The network interdictor's activities are limited 
13 



by a resource constraint.   We call the resulting model the "maximum-flow network- 

interdiction model" (MFNIM). 

Maximum-Flow Network-Interdiction Model (MFNIM) 

Indices: 

/, je N nodes in an directed network G = (N,A). Includes two special nodes, 

the source s and the sink t 

(i, j) G A       directed arcs in the network G = (N, A) 

Data: 

utj nominal capacity of arc (i,j) 

rtj interdiction resource required to interdict (break) arc (ij) 

R total interdiction resource 

Decision Variables: 

Network User's Decision Variables: 

ytj amount of flow on arc (i,j) 

Interdictor's Decision Variables: 

Xy 1 if arc (ij) is interdicted; 0 otherwise 

Formulation: 

min max   v.. (12) 

s-1-   X  y*~ X^-y.=o (i3) 
UJ)eFS(s) (j,s)eRS(.s) 

X   y* ~   X^/ =0        VieN-{s,t) (14) 
(i,y)eFS(>) 0\i)e/tf(i) 

14 



X y>j - Xy>+y.=o (15> 
(t,j)eFS(t) (;,r)€ÄS(r) 

0<y,y<M.(l-^)        V(i,7)eA (16) 

where X = {x e {0,1}N : £ W ^ R) (17) 

The objective (12) is to minimize the maximum flow. Constraints (13), (14) and 

(15) are just flow-balance constraints from MFM. The capacity constraints (16) restrict 

the amount of flow on each arc to the arc's nominal capacity if the arc is not interdicted, 

or to zero if the arc is interdicted. Constraint (17) limits the expenditure of interdiction 

resource. 

2.        An Equivalent Integer Program 

For a fixed interdiction decision, note that the inner maximization of the MFNIM 

is just a maximum-flow model. Wood (1993) takes the dual of the inner maximum-flow 

model and linearizes the resulting non-linear objective function to obtain an equivalent 

(linear) integer program. We refer to new model as "MFNIM-IP" and describe it next. 

Maximum-Flow Network-Interdiction As An Integer Program (MFNIM-IP) 

Indices: 

i, je N nodes in an directed network G = (N, A). Includes two special nodes, 

the source s and the sink t 

(/, j) e A       directed arcs in the network G = (N, A) 

Data: 

M,y nominal capacity of arc (i,j) 

nj interdiction resource required to interdict (break) arc (ij) 
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R total interdiction resource 

Decision Variables: 

xtj 1 if arc (ij) is interdicted; 0 otherwise 

a, for some cut (Ns,Nt), 1 if ie Ns; 0 if ie N, 

ßij 1 if arc (i,f) is a forward arc of the cut (Ns, N,) and is not interdicted; 

0 otherwise 

Formulation: 

nun 
a,p,x 

s.t ai-ctj+Xg+ßgZO        V(i,7)eA 

ar, -or, >1 

#^e{0,l} V(/,;)GA 

flf(.e{0,l} Vie AT 

Note that this model resembles DMFM but with di} replaced by ßtj + Xy. 

MFNIM identifies a cut where the variables or, have the same meaning as in the DMFM. 

xtj and ßjj represent interdiction decisions and can be explained as follows: For a 

forward arc (ij) crossing the cut, at -a} = -1 so ß~ + Xy =1 is required. So, either 

Xy = 1, indicating that this arc is interdicted, or ßi}=\, indicating that this arc is not 

interdicted and forms part of the minimum cut after interdiction. JC(>. = ß.. =0 indicates 
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that arc (ij) is neither interdicted nor part of the (identified) minimum cut after 

interdiction. 

D.       AN EQUIVALENT FORMULATION OF MFNIM 

The original derivation of MFNIM-IP from MFNIM is complicated (Wood 1993). 

However, a simpler derivation is possible. This derivation will be useful later and is 

provided for reference, next. 

We know that the objective function (12) of MFNIM is a concave function in 

thexy and so it is clear that MFNIM is a difficult, non-convex minimization problem 

even if the xtj are continuous. The problem, however, can be "convexified" by moving 

the variables x~ into the objective of the inner maximization (Cormican, Morton and 

Wood 1998). In the following, we give this formulation and explain why this technique 

works.   We call the new model the "convexified maximum-flow network-interdiction 

model" (MFNIMc). 

Convexified Maximum-Flow Network-Interdiction Model (MFNIMc) 

in max     ya- 2fyx# (18) x    y Ä 

l-       X    y„-    2>>-y„=0 (19) s. 

X    y* ~   2>*         =° VieN-s-t                               (20) 

S    3V-    2>,+yB=0 (21) 
(t,j)eFS(0 (7.»)6AS(») 

OZyy^u- V(iJ)eA                                    (22) 
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where X ={xe {0,1}M : Y,ruxv </?}. 

MFNIM and MFNIMc are essentially equivalent because the inner maximization 

in MFNIMc is essentially equivalent to the inner maximization in MFNIM. The inner 

objective in MFNIMc maximizes the maximum flow through the network less flow on 

interdicted arcs. Because the value of a unit of flow on an arc in a maximum-flow 

problem is at most one, there can be no benefit to the interdictor of having flow on 

interdicted arcs. Therefore, if JC~ = 1, we may assume that, as in MFNIM, ytj = 0. (It is 

possible in MFNIMc that ytj > 0 even if x~ = 0, but in this case there always exists an 

alternative optimal solution with yy = 0.) 

MFNIMc allows us to obtain MFNIM-IP directly.   To do this, fix the integer 

variables xtj, take the dual of the inner maximization and then release the x(j. 

Building on the material discussed in this chapter, we introduce MPNIM in 

Chapter HI and MCNIM in Chapter IV, respectively. 
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m. MULTI-PARTITION NETWORK-INTERDICTON MODEL 

In this chapter, we present the "multi-partition network-interdiction model" 

(MPNIM) that solves KNIP approximately. 

A.       OVERVIEW 

Recall from Chapter I that MFNIM cannot be used to solve KNIP. However, we 

can use some of the ideas behind MFNIM to solve KNIP approximately. 

MFNIM is based on the maximum-flow minimum-cut theorem (Ford and 

Fulkerson, 1956). Wood (1993) shows that MFNIM identifies a cut and breaks certain 

arcs in that cut so as to minimize remaining cut capacity. In other words, MFNIM 

partitions the node set N into two subsets A^ and Nt, with Ns containing a specified 

source node s (or source nodes) and Nt containing a specified sink node t (or sink 

nodes), and interdicts arcs that cross between these subsets, so that the flow between the 

subsets  Ns  and Nt is minimized.    We use this node-partitioning idea to develop 

MPNIM. 

We assume that the network G=(N£) is undirected and that K disjoint "special 

node subsets" N[,...,N'Kare prespecified; each N'k represents a set of source and/or sink 

nodes whose identities can be obtained through intelligence reports. Instead of trying to 

minimize the flow among the N'k,...,N'K directly (which results in MCNIM), MPNIM 

will partition N into K disjoint subsets NX,...,NK, with N[c,Nx,...,N'K cNK, and 

interdict certain arcs connecting the subsets Nk while observing constraints on interdiction 

resources. The objective is to minimize the total capacity of the uninterdicted arcs 

crossing between the subsets Nk. 
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This model is appealing because (a) we expect there to be a strong correlation 

between the minimized "total inter-subset capacity" and actual flow, (b) the optimal 

objective value of MPNIM clearly provides an upper bound on inter-subset flows, i.e., on 

the optimal solution to KNIP, and (c) the model reduces to MFNIM when K=2. 

We next give the formulation for MPNIM and explain the formulation in detail. 

We then extend the formulation to isolate the special node groups completely. 

B.       INTERDICTION MODEL MPNIM 

MPNIM can be formulated as follows: 

Multi-Partition Network-Interdiction Model (MPNIM) 

Indices: 

i, j e N nodes in an undirected network G=(N,A) 

(i, j) e A        undirected arcs in the network G=(N*A) 

N'k nodes that are preassigned to node subset Nk, k = 1,...,K. 

Nk nN'k, =0   V^ k', N'k * 0 for any k 

Data: 

U{j nominal capacity of arc (ij) 

rij interdiction resource required to interdict (break) arc (ij) 

R total interdiction resource 

Decision Variables: 

Xjj if arc (ij) crosses between two different subsets and is interdicted; 

0 otherwise 

aik 1 if node i is assigned to Nk;0 otherwise 
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ßij 1 if arc (/ j)  crosses between two different subsets and is not interdicted; 

0  otherwise 

Formulation: 

nun    2>.#,. (23) 

s.t. 2a*=1       ieN (24) 
k 

Xy +ßij+aik-ajk>0 k = l,...,K, (i, j)€ A (25) 

xtj +ßy+ajk-aik>0 k = 1,...,K, (/,;)e A (26) 

*#+j^ <1 (i,7)6 A (27) 

2^,</? (28) 

#,,*,€ {0,1} (i,7)eA 

aae{0,l} k = l,...,K,ieN 

flfasl ik = l,...,JS:,ieiV; (29) 

<% =0 Vk',ieN'k,k*k' (30) 

The objective (23) is to minimize the sum of the capacities on uninterdicted arcs 

crossing between different node subsets. Constraints (24) require each node i to belong 

to exactly one subset Nk. Constraints (25) and (26) enforce a partitioning of the nodes 

and determine whether an arc crosses between two subsets: 

1.  If i,je Nk,\hsa. a& -ajk =0 and ajk -a^ =0, which allows xtj =0 and 

ßy=0.  Xy = 1 and/or ßtj = 1 are also feasible to constraints (25) and (26) in 

this case, but we may assume that both variables are 0 because (a) ß~ = 0 
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contributes less to the objective function than does ß{j = 1, and (b) xr = 0 

consumes less resource than does xtj = 1.   (Alternate optimal solutions with 

Xgj = 1 are possible if there is excess resource.) 

2.   If ieNk  and  ye Nk., k *k', then  xij+ßij=l  is required to maintain 

feasibility. So, either x{j = 1, indicating that arc (/,/) is interdicted or ßr = 1, 

indicating that this arc is not interdicted and contributes to the inter-subset 

capacity after interdiction. 

MPNIM classifies the arcs in the network into three groups: (a) Arcs that cross 

between subsets and are interdicted, (b) arcs that cross between subsets and are not 

interdicted, and (c) arcs that do not cross between subsets. Constraints (27) together with 

(25) and (26) ensure that each arc is in one of these three groups. Constraint (28) 

ensures that total interdiction resource consumed does not exceed total resource available. 

More complicated resource constraints involving the xtj are certainly possible and do not 

materially affect the model. Constraints (29) set aA = 1 if node / is preassigned to node 

subset Nk, i.e., ie N'k, and constraints (30) set a^ = 0 to zero if ie N'k and k *■ k\ 

MPNIM is an approximation of MFNIM for two reasons. First, the model does 

not explicitly minimize flow among the special node groups Nk. Second, MPNIM does 

not enforce a sensible requirement that the nodes in each identified subset be contiguous. 

However, the solution to the proposed model may be a reasonable approximation and 

should provide insight into a model that explicitly minimizes inter-subset flows. 
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C. EXTENDING MPNIM TO ISOLATE NODE GROUPS 

We can extend MPNIM to isolate K special node groups completely. The simplest 

way to do this is (a) fix all ßt. =0, and (b) change the objective to min X^*<}, i.e., to 

minimize total interdiction resource consumption. 

D. COMPUTATIONAL RESULTS 

We have tested MPNIM using four artificially constructed networks assuming 

that rtj =1 for all arcs (ij). Test networks are n, xn2 grid networks as shown in Figure 1, 

where r^ is the number of nodes in the horizontal axis and n2 is the number of nodes in 

the vertical axis. The arc capacities Ky- are randomly drawn from the discrete uniform 

distribution on [13,99]. The model is formulated in GAMS (Brooke, Kendrick, Meeraus 

and Raman 1997) and run on a 333 MHz Pentium II PC using the solvers CPLEX 6.5 and 

XA (GAMS Development Corporation 1997). Solution times for MPNIM are mostly 

better using XA; however, we present CPLEX's results because solution times for 

MCNIM-IP, which is harder to solve than MPNIM, are better using CPLEX. We use a 

relative optimality criterion (OptCR) of 1%. That is, the solver stops when the integrality 

gap (|BP — BF|)/(1 + |BP|) < OptCR where BF is the objective function value of the 

current best integer solution and BP is the best possible integer solution (GAMS 

Development Corporation 1997). Table 1 gives model statistics and run times for several 

values of R and K for each of the four networks. Figure 1 displays one of the solutions. 

It is not hard to find (by hand) a feasible multi-commodity flow in Figure 1 in 

which all non-interdicted, inter-subset arcs are capacitated. Thus, this interdiction plan is 

optimal for MCNIM-IP as well as for MPNIM. 
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Network n, n. M \A\ Total Number of Optimal Run Time 

G = (N,Ä) Resource R Subsets K Obj. Value (seconds) 

1 7 4 28 63 9 

11 
6 

11 

3 

3 
4 
4 

16 

0 
334 
144 

1.6 

1.8 
1.7 
1.8 

2 10 6 60 149 10 
11 
16 
25 

3 
4 
4 
4 

321 
427 
222 

0 

4.2 
20.3 
18.2 
25.6 

3 14 7 98 263 11 
20 
16 
20 

3 
3 
4 
4 

234 
0 

313 
149 

4.2 
39.5 
6.4 
5.9 

4 14 9 126 333 11 
20 
11 
20 

4 
4 
5 
5 

863 
426 

1414 
924 

189.2 
160.9 
518.5 
563.1 

Table 1. Model statistics and run times for MPNIM using a relative optimality criterion of 1%. Several 
different values of R and K are used with four different networks. For instance, the problem for Network 2, 
which has 60 nodes and 149 arcs, when /?=10 and K=3 is solved in 4.2 seconds with an optimal objective 
value of 321. 

We have also tested MPNM to isolate K node groups completely, extending the 

model as described in Section C. We use the same test networks, computer, solver and 

optimality criterion. Table 2 gives model statistics and run times for different values of AT 

for each of the networks. Note that the optimal objective value is the amount of the 

interdiction resource required to isolate the node groups. 

Network n, «o \N\ \A\ Number of Optimal Run times 

G = (N,A) 
Subsets K Obj. Value (seconds) 

1 7 4 28 63 3 

4 
10 

18 
1.5 

2.1 
2 10 6 60 149 3 

4 
20 
23 

2.8 
10.6 

3 14 7 98 263 3 
4 

19 
26 

3.6 
3.7 

4 14 9 126 333 4 
5 

34 
46 

186.5 
484.4 

Table 2. Model statistics and run times for MPNIM when used to isolate K node groups completely. A 
relative optimality criterion of 1% is used. Several different values of K are used with four different 
networks. For instance, the problem for Network 2 when A=3 is solved in 2.8 seconds with an optimal 
objective value of 20. The optimal objective value is actually the amount of interdiction resource needed to 
isolate 3 prespecified node groups completely. 
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IV.     MULTI-COMMODITY NETWORK-INTERDICTION MODEL 

In Chapter IE, we developed MPNIM to solve KNIP approximately. In this 

chapter, we derive two models to solve KNIP exactly. These models are the "multi- 

commodity network-interdiction model" (MCNIM) and an equivalent formulation of 

MCNIM, the "convexified multi-commodity network-interdiction model" (MCNIMc). 

Through MCNIMc, we also obtain an equivalent integer program for MCNIM, denoted 

"MCNIM-IP." 

A.       OVERVIEW 

We assume that our adversary will try to maximize flow among K disjoint and 

prespecified node groups N[,...,N'K in a capacitated, undirected network G=(iV,A). We 

model this using K single-commodity maximum-flow models connected by joint capacity 

constraints. (This is actually a multi-commodity maximum-flow model.) Each single- 

commodity maximum-flow model indexed by k treats nodes in N'k as source nodes and 

nodes in [JiV*< as sink nodes; the adversary's objective is to maximize the sum of all 
*'** 

single-commodity flows. 

Having modeled the enemy's activities, the interdictor's problem is to minimize 

the maximum amount of flow among the N'k using limited interdiction resources. As in 

MFNIM, this interdiction problem can be modeled using two different min-max flow- 

based formulations: (a) The basic formulation, MCNIM, sets the capacity of an arc to 

zero if interdicted and (b) the convexified version of the basic formulation, MCNIMc, 

subtracts flow on interdicted arcs from the standard maximum-flow objective. 
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Our assumption that the adversary will maximize flow allows us to model the 

worst-case functionality (for the interdictor) of the adversary's system. The purpose of 

the adversary is really to move the "right amount of commodities" between the "right 

node groups." By minimizing maximum flow, we minimize an upper bound on the true 

amount of commodities, measured in common units, that can be transferred. This is the 

best we can do without additional information on the value of flows in the network. 

For modeling purposes, we define  AT = (JA^   to be "special nodes" and 
k 

N - N' to be "non-special nodes." Our formulations assume that all special nodes can be 

both source and sink nodes; however, the formulations can easily be adapted to situations 

in which some special nodes are only source or only sink nodes. 

We now explain MCNM, MCNIMc and MCNIM-P in detail. 

B.        INTERDICTION MODELS 

MCNIM is first described. It is a straightforward extension of MFNIM. 

Multi-Commodity Network-Interdiction Model (MCNTM) 

Indices: 

i, ye N nodes in an undirected network G = (N, A) 

(/, j) e A       undirected arcs in the network G = (N, A) 

N'k subset of "special nodes," k = 1,... JK. 

NknNk,=0    \/k*k' 

N* N' = (}N'k 
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Data: 

u~ nominal capacity of arc (i,j) 

rtj interdiction resource required to interdict (break) arc (i, j) 

R total interdiction resource 

Decision Variables: 

Network User's Decision Variables: 

yijk amount of flow on arc (i, j) whose source is in N'k 

Interdictor's Decision Variables: 

Xjj 1 if arc (i, j) is interdicted; 0 otherwise 

Formulation: 

mm max    £(    £     yijk +     ^yjik) (31) 

s-t.    2  yijk~  5>,*=0 k = l,...,K,ieN-N' (32) 
(i,y)eA+ 0'.i)eA+ 

S^+^)-".;(1-^)    0".J)eA (33) 
it 

yijk>0,yjik>0 k = l,...,K,(iJ)eA 

yijk =0 k = l,...,K, ieN'-N'k,(i,j)<=A (34) 

yjik = 0 k = \,...,K, je N'-N'k, (i,j)e A (35) 

yijk s 0 fc = 1,..., £, ; e iV;, (i,;) e A (36) 

yjik ^ 0 fc = 1,..., K, i e N[, (i, j) e A (37) 

where X = {xe {0,1}'A| : Ytrvxi ~ R^' 
(U)eA 
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The objective (31) is to minimize the maximum flow among the subsets N'k. The 

arc capacity constraints (33) restrict the amount of flow on each arc to the arc's nominal 

capacity if the arc is not interdicted, or to zero if the arc is interdicted. 

For x = 0, the inner maximization is simply the "multi-commodity maximum- 

flow model" (MCMFM). MCMFM models the enemy's potential transfers of materiel 

among the subsets N'k using K single-commodity flow models linked by joint capacity 

constraints. In MCMFM, for each subset N[ there is a single-commodity maximum- 

flow model in which nodes inA^ are treated as sources and nodes in \]N[. are treated 
k'*k 

as sinks. Each single-commodity flow model is formulated using the approach of 

SMFM: Instead of defining a super-source connected to N'k and a super-sink connected 

to N'-N[ and maximizing flow on a return arc, the amount of flow leaving N[ is 

maximized; see the objective (31). Flow-balance constraints (32) are given only for non- 

special nodes; flows originating at sink nodes are fixed to 0 by (34) and (35), and flows 

entering source nodes are fixed to 0 by (36) and (37). 

Like MFNIM, MCNIM is a difficult, non-convex minimization problem: In 

particular, the optimal solution to the inner maximization is a concave function of x. 

However, the model can be convexified by moving the variables xtj into the objective of 

the inner maximization as we did in the derivation of MFNIMc. We do this next. 
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Convexified Multi-Commodity Network-Interdiction Model (MCNIMc) 

Indices: 

As in MCNIM 

Data: 

As in MCNIM 

Decision Variables: 

As in MCNIM 

Formulation: 

nun max    £(    X     yijk+     ^yjik)- X (XOfc+>/*))** (38) 
y *     <.i,j)eAJeN't <.i,j)eA:j<=N'k (i,j)eA    k 

St.-    X   y#~  X?,*=0 k = l,...,K,ieN-N'      -.a* (39) 
(/,;) eA* 0,0 eA+ 

X(y*+?*)*«, 0',7)eA :ßtj (40) 

yp>0,y,.a>0 Ä: = l,...,25:,(i,7)eA 

yijk =0 k = l,...,K,ieN'-N'k,(iJ)eA (41) 

y,.* =0 k = l,...,K,jeN'-N'k,(iJ)eA (42) 

yp = 0 k = 1,..., ÜT, 7 e iV;, (/,;) e A (43) 

3^=0 k = l,...,K,ieN'k,(iJ)eA (44) 

where X = {xe {0,1}'A' : X7"»*» - Ä^ • The a* and Ar are dual variables for constraints 

(39) and (40), respectively, given fixed x. 

The objective (38) is to minimize the total maximum flow less the flow on 

interdicted arcs. The inner objective in (38) is to maximize the maximum flow through 
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the network less flow on interdicted arcs.   This is equivalent to maximizing flow with 

^(yijk+yjik)-ugO-~xij)   V(i,;*)6i4   as in the inner maximization of MCNIM 
k 

because: As in the single-commodity model, 1 is an upper bound on the dual variable ßtj 

associated with the joint capacity constraints for arc (ij) when xtj = 1.  This establishes 

that MCNIM and MCNIMc are essentially equivalent. Constraints (39) and (41) through 

(44) are as in MCNIM.   Constraints (40) require that the total flow on an arc (i,j) not 

exceed that arc's capacity. 

C.       AN EQUIVALENT INTEGER PROGRAM 

MCNIMc can be converted into a simple minimization model by fixing x 

temporarily, taking the dual of the inner maximization and then releasing x: 

Multi-Commodity Network-Interdiction Model As An Integer Pro2ram 

(MCNIM-IP) 

Indices: 

As in MCNIM 

Data: 

As in MCNIM, plus 

Sijk 1 if i e N[; 0 otherwise 

Decision Variables: 

xtj 1 if arc (i, j) is interdicted; 0 otherwise 

a& dual variables associated with flow-balance constraints (39) 

ßij dual variables associated with capacity constraints (40) 
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Formulation: 

5XA; (45) min 
x,a,ß 

VJ)eA 

s.t   -cCz+ajt+ßy+XyZSyt        k = 1,...,K, (i, j)e A (46) 

-ajlc +aik+ßij +xij>Sjik       k = l,...,K, (i,7)e A (47) 

Zv^* (48) 

*,ye{0,l},#y>0 (i,7)eA 

or* free k = l,...,K,ie N 

The objective function (45) derives from the dual objective of MCMFM just as 

the objective of MFNIM derives from the dual of the standard maximum-flow model. 

However, we cannot guarantee that the a& or the ßu here will be binary as they are in 

MFNIM; thus, there is no simple interpretation of this objective in terms of cut capacity 

as there is for the objective of MFNIM. Constraints (46) and (47) account for the arcs 

that (a) start at a non-special node and end at a sink node, (b) start at a source node and 

end at non-special node, (c) start at a non-special node and end at non-special node, and 

(d) start at a source node and end at sink node. Constraint (48) is the interdiction 

resource constraint, as usual. 

D.       COMPUTATIONAL RESULTS 

We have tested MCNIM-IP using the test networks, computer, solver and 

optimality criterion that were used to test MPNIM. Table 3 gives model statistics and run 

times for the same values of R and K as in Table 1. We find optimal solutions to 10 out 

of 16 problems in a reasonable amount of time (at most 3,600 seconds). MCNIM-IP's 
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solution to the problem in Figure 1 is identical in x to the solution provided by MPNIM 

and objective values are equal. This must be true because we identify a feasible solution 

to MCNIM from the solution to MPNIM, and all arcs crossing the MPNIM partition are 

saturated in that solution. 

In the solution just mentioned, all ß~ = 0 or 1. Those ß~ that are 1 correspond to 

the saturated, inter-subset arcs. Figure 2 shows one solution in which not all the ßtj are 

binary. 

Total Initial Optimal Run 
Network TU n2 \N\ \A\ Resource Number of Integrality Objective Times 
G=(N,A) 

1 II R Subsets K gap (%) Value (sec) 

1 7 4 28 63 9 3 4.4 16.0 4.4 
11 3 100.0 0.0 2.9 
6 4 24.9 322.5 2.5 

11 4 63.9 144.0 2.6 
2 10 6 60 149 10 3 39.8 321.0 6.3 

11 4 59.7 420.0 656.0 
16 4 90.2 221.0 408.0 
25 4 100.0 0.0 24.6 

3 14 7 98 263 11 3 52.6 234.0 19.4 
20 3 100.0 0.0 39.3 
16 4 80.4 [313-2.4%] 3600.0 
20 4 100.0 [149-3.7%] 3600.0 

4 14 9 126 333 11 4 44.5 [791-23.7%] 3600.0 
20 4 87.4 [476-75%] 3600.0 
11 5 35.1 [1102-25.9%] 3600.0 
20 5 64.4 [846-77%] 3600.0 

Table 3. Model statistics and run times for MCNIM-IP using a relative optimality criterion of 1%. Several 
different values of/? and K are used with four different networks. For instance, the problem for Network 3, 
which has 98 nodes and 263 arcs, when R=\\ and K=3 is solved in 19.4 seconds with an optimal objective 
value of 234. The initial integrality gap for this problem is 52.6%. "[ ]" indicates that the problem could 
not be solved in less than 3,600 seconds with 1% OptCR. For those problems, the resulting objective value 
and OptCR at the end of 3,600 seconds are given in [ ]. For example, the problem for Network 3 when 
/?=16 and K=A has an objective value of 313 and an OptCR of 2.4% at the end of 3,600 seconds. 

E.       COMPARISON OF COMPUTATIONAL RESULTS 

Table 4 compares solution statistics for MPNIM and MCNIM-IP.   "By theorem," we 

know that Z*MPmM >Z'MCNM_W, and the statistic 100%xZ^NIM/Z*MCNIM.IP  allows for a 
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simple comparison of the two optimal objective values when both models can be solved. 

Unfortunately, MCNIM-IP can only be solved for 10 of the 16 problems. Of the 10 

problems that are solved by both models, 7 have essentially identical solutions, and the 

largest difference is 3.6%. It appears that, at least for the problems solved by both 

models, there is a strong correlation between optimal objective values. The solution 

provided by MPNM may be, in fact, a more-than-adequate approximation to the solution 

to MCNIM-IP, especially because MPNIM appears to be much easier to solve. 

Network 
G=(N,A) 

ni n2 \N\ \M R K MPNIM MCNIM-IP 100% XZ^ 
Run Run z* 

** MCNIM-IP Z* times Z* times 
(sec) (sec) 

1 7 4 28 63 9 3 16 1.6 16.0 4.4 100.0% 
11 3 0 1.8 0.0 2.9 100.0% 
6 4 334 1.7 322.5 2.5 103.6% 

11 4 144 1.8 144.0 2.6 100.0% 
2 10 6 60 149 10 3 321 4.2 321.0 6.3 100.0% 

11 4 427 20.3 420.0 656.0 101.7% 
16 4 222 18.2 221.0 408.0 100.5% 
25 4 0 25.6 0.0 24.6 100.0% 

3 14 7 98 263 11 3 234 4.2 234.0 19.4 100.0% 
20 3 0 39.5 0.0 39.3 100.0% 
16 4 313 6.4 [313-2.4%] 3600.0 - 
20 4 149 5.9 [149-3.7%] 3600.0 - 

4 14 9 126 333 11 4 863 189.2 [791-23.7%] 3600.0 - 
20 4 426 160.9 [476-75%] 3600.0 - 
11 5 1414 518.5 [1102-25.9%] 3600.0 - 
20 5 924 563.1 [846-77%] 3600.0 - 

Table 4. Model statistics and ran times for MCNIM-IP and MPNIM using a relative optimality criterion 
of 1%. The problem for Network 2 when R=l 1 and K=A is solved in 20.3 seconds with an objective value 
of 427 using MPNIM and in 656 seconds with an objective value of 420 using MCNIM-IP. The solutions 
differ by 1.7%. "[ ]" indicates that the model could not be solved in 3,600 seconds, and shows the best 
solution found and the integrality gap at termination. 
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V.       CONCLUSION 

A.       SUMMARY 

This thesis has studied the £-group maximum-flow network-interdiction problem 

(KNIP) which is a generalization of the maximum-flow network-interdiction problem 

(MFNIP). In KNIP, a network user attempts to maximize flow among prespecified, 

disjoint "special node groups", N[,N'2,...,N'K, K>3, while an interdictor interdicts 

(destroys, stops flow on) network arcs, using limited interdiction resources, to minimize 

this maximum flow. We have developed two models, namely the multi-partition 

network-interdiction model (MPNIM) and the multi-commodity network-interdiction 

model (MCNM) to solve KNIP, and showed how MPNIM can be modified to 

completely isolate the special node groups. 

MPNIM is an approximating model that partitions the node set N into subsets 

N^.-jNg, with N) c Nlf...,N'K c NK, and interdicts certain arcs connecting the subsets 

Nk while observing constraints on interdiction resources. The objective is to minimize 

the total capacity of the uninterdicted arcs crossing between the various subsets. 

MCNIM is an exact model that explicitly minimizes the maximum amount of 

flow that can potentially be moved among the node groups using K single-commodity 

flow models connected by joint capacity constraints. Viewed as a minimization, MCNIM 

is a difficult, non-convex problem. So we derive an equivalent convexified formulation, 

MCNIMc. Through MCNIMc, an equivalent integer program, MCNIM-EP, is obtained 

and solved. 
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We have tested MPNIM and MCNIM-IP using four artificially constructed test 

networks ranging in size from 28 nodes and 63 arcs to 126 nodes and 333 arcs. All 

computation was performed on a 333 MHz Pentium II computer using the CPLEX 

Version 6.5 solver. MPNIM, when used to isolate node groups, solves 8 problems (two 

values of K are used for each network) in less than 484.4 seconds each. When used to 

solve KNIP, MPNIM solves all 16 problems (two values of .ST and two resource levels for 

each network), each in less than 563.1 seconds. MCNIM-IP can only solve 10 of the 

problems given a limit of 3,600 CPU seconds. The optimal objective for MPNIM, 

Z
MPNIM »is ^ upper bound on the optimal objective for MCNIM-IP, Z'ucmA_w. For the 

10 problems solved by both models, Z^p^ does not exceed Z'MCNm_w by more than 

3.6%, so MPNIM may be an adequate approximation and replacement for MCNIM in 

many situations. 

B.       FUTURE WORK 

Further research on MCNIM and MPNIM is needed to improve solution times, 

enable solution of large problems, and broaden their scope of applications. To enable 

solution of large problems and shorten run times, solving MCNIMc by Benders 

decomposition can be tried. Cormican (1995) shows that Benders decomposition tends to 

work better than solving the integer program for MFNIP directly. To improve solvability 

(i.e., to enable solution of large problems and shorten run times) of both MPNIM and 

MCNIM, integer-programming cuts for both MPNIM and MCNIM-IP can be devised. 

Wood (1993) shows how such cuts can be beneficial in solving one maximum-flow 

interdiction model. 
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This thesis has ignored issues of uncertainty in the models, but uncertainty in 

intelligence reports and in interdiction success might be important. The models should be 

extended to handle uncertain interdiction successes and uncertain arc capacities as in 

Cormican, Morton and Wood (1996). 
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